To understand Long COVID, researchers must be able to figure out which patients have it. Our understanding of Long COVID is evolving and it has been difficult to know who had Long COVID, especially in children. We need a reliable method to identify who might have Long COVID using existing health data.
The purpose of this study was to create and test a computer program, called an algorithm, to find out which children have Long COVID based on their electronic health records (EHRs). EHRs (digital medical charts that have health data like doctor visits, lab results, and other health history) are an important source of data for research studies on Long COVID. The algorithm looks at EHRs to find patterns in the diagnoses, prescribed medications, procedures, and lab tests children received after having COVID-19. These patterns can be described as a phenotype, or a set of measured or visible traits, that can tell us who had Long COVID.
The algorithm correctly identified 67% of the patients who had a Long COVID diagnosis from the EHRs. Among the patients who the algorithm said had Long COVID, 91% had a Long COVID diagnosis. Overall, the algorithm was correct in identifying whether a patient had a Long COVID diagnosis 99% of the time. This means the phenotype can be used to recognize which children have Long COVID in EHR data for future studies, or to screen patients to participate in clinical trials.